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Abstract

We use a variational approach to optimize the center point coeffi-
cients associated with the piecewise linear basis functions introduced
by Stone and Adams [1], for polygonal zones in two Cartesian dimen-
sions. Our strategy provides optimal center point coefficients, as a
function of the location of the center point, by minimizing the error
induced when the basis function interpolation is used for the solution
of the time independent diffusion equation within the polygonal zone.
By using optimal center point coefficients, one expects to minimize
the errors that occur when these basis functions are used to discretize
diffusion equations, or transport equations in optically thick zones
(where they approach the solution of the diffusion equation). Our
optimal center point coefficients satisfy the requirements placed upon
the basis functions for any location of the center point. We also find
that the location of the center point can be optimized, but this re-
quires numerical calculations. Curiously, the optimum center point
location is independent of the values of the dependent variable on the
corners only for quadrilaterals.

∗This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1



1 Introduction

Piecewise linear basis functions were introduced by Stone and Adams [1, 2] as
an alternative to the use of Wachspress’s rational functions [3] when employ-
ing the finite element method to solve the transport equation on polygonal
grids in two dimensions, and on hexahedral grids in three dimensions. The
method was further developed by Bailey, et al., for the solution of the diffu-
sion equation [4] and for the transport equation in RZ and XYZ geometry
[5, 6]. These basis functions have been shown to be effective in the solution of
diffusion and transport equations, removing the need to employ nonlinear ba-
sis functions that require numerical integration to evaluate matrix elements
for the finite element method.

In this paper, we provide an optimization of these piecewise linear basis
functions when used to solve the diffusion equation, or related equations,
in two Cartesian dimensions. Examples of related equations are Laplace’s
equation and a transport equation that limits to a diffusion equation in some
physical limit. Our strategy is to optimize the accuracy of the interpolation
provided by the basis functions for the solution of Laplace’s equation within
the zone, for Dirichlet boundary conditions on the perimeter. By doing so,
an important property of the equilibrium solution, zero net flux for source
free problems, is preserved on the perimeter of each zone.

The scalar function, Φ(x, y), that is being interpolated inside the polygon
is the electric potential in the case of Laplace’s equation. For the transport or
diffusion of thermally emitted radiation Φ is the black body radiation energy
density, Φ = aT 4, where a is the radiation constant and T is the temperature.

Stone and Adams construct their basis functions in two dimensions by
adding a “center” point inside the N sided polygon and connecting it to
the corners of the polygon, thereby dividing it into triangles. (The corners
are the nodes or vertices of the mesh that divides the problem domain into
zones.) The basis functions have two roles, first they are weight functions
for evaluating the energy deposition, or the source terms, and second they
provide an interpolation within the polygonal zone for a function defined at
its corners.

The basis functions must sum to 1 everywhere in the polygon to be useful
as weight functions. Stone and Adams also require that the basis functions
be able to interpolate any linear function within the polygonal zone exactly.
These two requirements establish relations between the value of the basis
functions at the center point, and the location of the center point. Stone and
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Adams satisfy these requirements with a simple choice for the center point
coefficients, 1/N , where N is the number of basis functions, and by using the
average of the corner positions for the location of the center point.

In this paper we show that, given a center point location, the value of Φ
at that point can be chosen so that it gives the best approximation to the
solution of the steady state diffusion equation (within the zone) with the given
boundary conditions. Moreover, we give an explicit formula for the optimum
value. By the principle of superposition, one naturally obtains optimized
basis functions and we find that these basis functions automatically satisfy
the two properties described above, for any location of the center point.

There is also an optimum position for the center point, and it appears
that finding this position can only be done numerically except in special cases
where symmetry can be exploited. We have found that for the case of a four
sided zone, the optimum position of the center point is independent of the
values of Φ at the corners, i.e. the position of the optimal center point is a
geometric quantity, but that for five sides or more it depends as well on the
values of Φ at the corners.

The optimal center point coefficients that we derive for N sided polygonal
zones are easily incorporated into codes that use these basis functions, as they
are simple functions of the corner and center point locations. Finding optimal
center point locations is perhaps less useful, in that it is restricted to four
sided zones if the values of Φ at the corners are not known, the usual case;
but examining this optimization can lead to useful heuristics in choosing the
location of a center point without resorting to a numerical solution.

We will not discuss optimizing the three dimensional extension of these
basis functions, although we see no reason why similar considerations could
not be applied in three dimensions.

The paper is organized as follows: In Section 2 we review the basis func-
tions introduced by Stone and Adams, for polygons in two Cartesian dimen-
sions, and the conditions that they must satisfy in order to be useful in the
finite element method. In Section 3 we consider a strategy for optimizing
the center point coefficients, developing optimized coefficients in a compact
closed form, and demonstrate that they automatically satisfy the require-
ments of Stone and Adams, in addition to identifying just what is improved
by using them. In Sections 4 and 5 we consider two special cases for zone
shapes, finding that the optimal center point coefficients agree with those
of Stone and Adams in the case of a rectangle, as one would expect. One
can construct the exact solution to Laplace’s equation (for our boundary
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Figure 1: A quadrangle divided into four triangles. The Xi = (xi, yi) are the
locations of the corners, Xc is the location of the center point, Ai,j is the area
of the triangle, and Li,j is the length of an edge.

conditions) in the case of a rectangle, and we find that the basis function
interpolation produces the same flux integrated along each side of the rect-
angle as the exact solution. In Section 6 we consider optimizing the location
of the center point, providing somewhat limited, but perhaps useful, results.
We end with a discussion in Section 7.

2 The piecewise linear basis functions

The basis functions are piecewise linear and continuous in a polygonal zone.
In order to construct the basis functions, an N sided polygon is divided into
N triangles by selecting a center point, Xc = (xc, yc), within the polygon and
connecting the center point to each corner with a straight line, as shown in
Fig. 1. The location of the center point, Xc, is a free parameter subject to
the requirement that it be located within the zone and that the signed areas
of the triangles be positive.

There are N basis functions, χi, one associated with each corner of the
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polygonal zone located at Xi. We denote the basis function associated with
corner i as χi. The non-zero domain of each basis function consists of N
triangles; each triangle extending from the center point to a side of the
polygon. The basis function associated with corner i has the value 1 at
corner i, the value αi at the center point, and the value 0 at all the other
corners. The basis function is linear within each triangle, taking the form
ai;j,j+1 x+ bi;j,j+1 y+ ci;j,j+1 within the triangle, with the subscripts “j, j+ 1”
identifying the side of the polygon; 1 ≤ j ≤ N and j = N +1 being the same
as j = 1. The basis functions are continuous everywhere within the polygon.
The coefficients ai;j,j+1, bi;j,j+1 and ci;j,j+1 are unique for each triangle in each
basis function. In [2], the triangular sub-cell sharing a side with the original
polygon is referred to as a “side” of the polygon.

There are two requirements that the basis functions should fulfill. First,
the use of the basis function as a weight function requires that

1 =
∑

i

χi(x, y) (1)

everywhere in the zone. This requirement places a condition on the αi,

1 =
∑

i

αi . (2)

When Φ has a linear dependence on X = (x, y) it is a solution of Laplace’s
equation. Therefore, a reasonable second requirement is that the basis func-
tions be able to represent Φ exactly if its values on the boundary of the
polygonal zone happen to be on a single plane in three dimensions.

Specifically, let us assume that the values, Φi, at the corners lie in a single
plane. We have then

Φi = Axi +B yi + C , (3)

where Φi is the value of the function at corner i and Xi = (xi, yi) is the
location of the corner. The basis functions are used to interpolate between
the values provided at the corners, Φi. The value of Φ(x, y) anywhere in the
zone is given by

Φ(x, y) =
∑

i

χi Φi . (4)

In particular, the value of Φ at the location of the center point, Φc = Φ(xc, yc),
is given by

Φc =
∑

i

αi Φi . (5)
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If the Φi satisfy Eq. (3), we have that

Φc =
∑

i

αi(Axi +B yi + C) , (6)

and we want
Φc = Axc +B yc + C . (7)

It is easy to see that Eq. (7) will be satisfied if, in addition to Eq. (2), we
have

xc =
∑

i

αi xi , (8)

and
yc =

∑
i

αi yi . (9)

If the interpolated value, Φc, lies on the same plane as the Φi it is easy to
see that the value of Φ everywhere in the zone lies on the same plane.

Stone and Adams [1, 2] chose αi = 1/N and used the average of the
corner positions for the coordinates of the center point. A quick inspection
of Eqs. (2,8,9) reveals that their choice satisfies these equations. This choice
leads to second order accuracy [4], but restricts the polygon to shapes that
contain the average of the corner positions. It also misses the possibility of
tuning the basis functions for their intended use, best representing solutions
of the diffusion equation (and related equations) within the zone.

3 Optimal center point coefficients

A third requirement that we can place on the basis functions is that they
minimize the error when approximating the solution of the steady state diffu-
sion equation, without sources or sinks, using a constant diffusion coefficient
within the zone. Given the boundary condition of Φi at the corners and
linear interpolation on the zone edges between them, this is the solution to
Laplace’s equation,

∇2Φ = 0 . (10)

By providing the best approximation to the time independent diffusion equa-
tion within the zone, we hope to obtain the best accuracy that the basis
functions can provide when the solution of the time dependent transport
equation tends to the equilibrium diffusion limit.
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A consequence of Eq. (10) is that, in steady state, the net flux around the
perimeter of the polygon is zero. Mathematically, this follows from Eq. (10)
by the divergence theorem. It is also required by energy conservation.

We will use the variational method for solving Laplace’s equation within
the polygonal zone. The method has been described many times [7, 8]; it
is also called “minimizing the Dirichlet energy.” In the variational method,
a family of trial functions, ψ, that meet the boundary conditions are con-
sidered. The best approximation to the solution of Laplace’s equation is
obtained by the trial function ψ that minimizes the integral of the square of
the gradient on the domain, Ω,

E(ψ) =
1

2

∫
Ω

|∇ψ|2dΩ , (11)

where E(ψ) is known as the Dirichlet energy.
The piecewise linear basis function interpolation provides a parameterized

trial function that matches the boundary condition on the zone with the
parameters being the αi and the location of the center point, Xc. Both αi

and Xc can be optimized to minimize the value of the integral in Eq. (11).
First, we assume that the location of the center point is given. In Section

6 we discuss its best position. Considering that Φ is a linear superposition of
basis functions, Eq. (4), optimization can be accomplished one basis function
at a time. As discussed above, the basis function χi is obtained by setting
Φi to one, leaving the value at the center point variable, αi, and setting the
values at the other corners to 0. The gradient is constant on each triangle,
thus the integral in Eq. (11) becomes a sum of the square of the gradient
in each triangle multiplied by its area. This can be done by straightforward
algebra. The resulting sum is quadratic in αi. The zero of the derivative with
respect to αi provides a linear equation to solve, for each αi independently.
The resulting αi are given by

αi = ni/d , (12)

where

ni =
(xc − xi+1)(xi − xi+1) + (yc − yi+1)(yi − yi+1)

Ai,i+1

+
(xc − xi−1)(xi − xi−1) + (yc − yi−1)(yi − yi−1)

Ai−1,i

(13)
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and

d =
∑

i

L2
i,i+1

Ai,i+1

, (14)

where Li,i+1 is the length of the edge of the polygon connecting corners i and
i+ 1, and Ai,i+1 is the area of the triangle with this edge as one of its sides.

We must check that these values of αi satisfy the requirements embodied
in Eqs. (2,8,9). First, we consider the sum of the αi. Recognizing that the
αi all share a common denominator, d, we consider the sum∑

i

ni =
∑

i

(xc − xi+1)(xi − xi+1) + (yc − yi+1)(yi − yi+1)

Ai,i+1

+
∑

i

(xc − xi−1)(xi − xi−1) + (yc − yi−1)(yi − yi−1)

Ai−1,i

. (15)

Noting that the index arithmetic is modulo N and that the sum is over the
entire range of indices, we shift the index i in the second sum by 1.∑

i

ni =
∑

i

(xc − xi+1)(xi − xi+1) + (yc − yi+1)(yi − yi+1)

Ai,i+1

+
∑

i

(xc − xi)(xi+1 − xi) + (yc − yi)(yi+1 − yi)

Ai,i+1

. (16)

At this point the sums can be combined term by term∑
i

ni =
∑

i

L2
i,i+1

Ai,i+1

, (17)

and we see that ∑
i

ni = d , (18)

and therefore
1 =

∑
i

αi . (19)

This is true regardless of the location that we choose for the center point as
long as the individual triangle areas are positive.

Next, we consider ∑
i

nixi . (20)
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Referring to Eq. (15), we have∑
i

ni xi =
∑

i

(xc − xi+1)(xi − xi+1)xi + (yc − yi+1)(yi − yi+1)xi

Ai,i+1

+
∑

i

(xc − xi−1)(xi − xi−1)xi + (yc − yi−1)(yi − yi−1)xi

Ai−1,i

. (21)

As earlier, we shift the i by 1 in the second sum∑
i

nixi =
∑

i

(xc − xi+1)(xi − xi+1)xi + (yc − yi+1)(yi − yi+1)xi

Ai,i+1

+
∑

i

(xc − xi)(xi+1 − xi)xi+1 + (yc − yi)(yi+1 − yi)xi+1

Ai,i+1

.(22)

Reorganizing, we get∑
i

nixi =
∑

i

(xc − xi+1)(xi − xi+1)xi + (xc − xi)(xi+1 − xi)xi+1

Ai,i+1

+
∑

i

(yc − yi+1)(yi − yi+1)xi + (yc − yi)(yi+1 − yi)xi+1

Ai,i+1

. (23)

We simplify the numerator in the first sum and factor the numerator in the
second sum, revealing∑

i

nixi =
∑

i

(xi − xi+1)2xc

Ai,i+1

+
∑

i

(yc(xi − xi+1) + xi+1yi − xiyi+1)(yi − yi+1)

Ai,i+1

. (24)

To sort this out, we consider

2Ai,i+1 = xc(yi − yi+1) + yc(xi+1 − xi)− xi+1yi + xiyi+1 , (25)

obtained with the cross product rule for the area of the triangle, followed by
factoring out xc and yc. With an eye to Eq. (24), we manipulate this further,
obtaining

yc(xi − xi+1) + xi+1yi − xiyi+1 = xc(yi − yi+1)− 2Ai,i+1 , (26)
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and we substitute this into Eq. (24) to obtain∑
i

nixi =
∑

i

(xi − xi+1)2xc

Ai,i+1

+
∑

i

(yi − yi+1)2xc

Ai,i+1

+ 2
∑

i

(yi+1 − yi) . (27)

The last sum in Eq. (27) is zero, we now have

∑
i

nixi = xc

∑
i

L2
i,i+1

Ai,i+1

= xcd , (28)

and finally,

xc =
∑

i

αixi . (29)

We refrain from repeating this derivation to show that

yc =
∑

i

αiyi . (30)

With this done, we have shown that the optimal αi produce satisfactory
weight functions for the finite element method and satisfy the requirement
that the basis functions can represent any linear solution exactly. We did not
have an a-priori guarantee that the optimal center point coefficients would
lead to basis functions that satisfy the requirements above for any choice of
center point that provides positive area triangles, but they do.

We have also considered how to determine αi so that the perpendicular
gradient (the flux) integrated around the perimeter of the polygonal zone
is zero. This requirement leads to exactly the same αi as we just obtained
by minimizing the square of the gradient. We see that using the optimal αi

preserves an important property of the exact solution, that the divergence of
the gradient is zero, or, in other terms, that energy is conserved within the
zone.

4 Rectangles

The exact solution for Laplace’s equation in the interior of a rectangle, for
any given boundary values, Φi, on the corners and a linear interpolation
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Figure 2: A rectangular zone with corner coordinates and values of Φ anno-
tated.

between them on the edges of the rectangle, can be expressed in closed form.
This provides a point of comparison for the piecewise linear basis function
interpolation, both in terms of investigating the accuracy of the flux across
the edges and relating the optimal center point coefficients to the ones used
by Stone and Adams.

First, let us consider the exact solution for Laplace’s equation on the
annotated rectangle shown in Fig. 2.

We construct a “ruled surface” for Φ by defining

x = −a+ 2as

y = −b+ 2bt

Φa = Φ1 + (Φ2 − Φ1)s

Φb = Φ4 + (Φ3 − Φ4)s

Φ = Φa + (Φb − Φa)t , (31)

where s and t is are parameters that vary from 0 to 1. This parametrized
definition for Φ(x, y) matches the desired boundary conditions on the rect-
angle, by inspection. For the rectangular domain, the ruled surface is easily
expressed directly as a function of x and y,

Φ(x, y) =
1

4

[
(−Φ1 + Φ2 + Φ3 − Φ4)

x

a
+ (−Φ1 − Φ2 + Φ3 + Φ4)

y

b

+(Φ1 − Φ2 + Φ3 − Φ4)
xy

ab
+ (Φ1 + Φ2 + Φ3 + Φ4)

]
. (32)
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The fact that the Laplacian is zero is easily seen by inspecting Eq. (32)
and the fact that the boundary conditions are matched is easily seen by
inspecting Eq. (31). We have, then, that the ruled surface interpolation
of the boundary conditions is the exact solution of Laplace’s equation on
the rectangle. Unfortunately, a ruled surface does not provide a solution of
Laplace’s equation on a more general quadrilateral.

Using the scheme of Stone and Adams the center point is the average of
the corner positions, located at the origin in this case, and the αi = 1/4. For
the same choice of the center point, the optimal αi, from Eq. (12), are also
all 1/4. The optimal αi therefore match those used by Stone and Adams in
the symmetric case of the rectangle, but an examination of Eq. (12) shows
that distorted zones lead to unequal αi. We expect that using the optimal
αi will lead to accuracy improvements for distorted zones.

5 Boomerangs

Lagrangian hydrodynamic algorithms function by moving the nodes that
define the mesh. This motion can lead to a zone taking on a concave shape,
the four sided version of which is known informally as a boomerang. As
a particular example, consider the symmetric case shown in Fig. 3. The
coordinates of the corners have been chosen so that they are symmetric about
the y axis, and that the center point defined by the average of the corner
positions is at the origin.

In our example boomerang, when 2b > c the center point defined by the
average of the corner positions, the origin, is located outside the zone and the
scheme of Stone and Adams breaks down. When using the optimal αi one
is free to choose the center point to be within the zone, perhaps at a sweet
spot half way between corners 2 and 4, and get a perfectly good division of
the boomerang into four triangles.

6 Optimal center point location

With the optimal center point coefficients calculated as a function of the
location of the center point, (xc, yc), one can consider optimizing the location
of the center point. Just as we found the optimal αi by minimizing the square
of the gradient, Eq. (11), one can attempt using the same strategy to optimize
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Figure 3: A rather symmetric boomerang with corner numbers and coordi-
nates annotated.
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the location of the center point. Just as we had no a-priori guarantee that
the αi calculated by the variational method would lead to satisfactory basis
functions, we have no guarantee that the optimal location for the center point
is independent of the values, Φi, on the corners.

The process for calculating the optimal center point is simply described,
but not easily executed: after substituting the optimal αi, find the location of
the center point that minimizes the square of the gradient of Φ. In practice,
one wants to find the zeros of the derivatives of the square of the gradient
with respect to xc and yc. The expressions involved are complex and we have
not been able to find a closed form solution for the general case, even for the
four sided zone. Of course, for it to be useful, the location of the center point
needs to be independent of the values of the Φi.

We have explored the issue numerically, however, using Mathematica to
find the center point that minimizes the square of the gradient, employing
high precision arithmetic. We have found that the location of the optimum
center point is independent of the values for the Φi on four sided zones,
including the boomerang case. We also find that the resulting center point is
independent of the starting point in a numerical search as long as one starts
from a position where all of the triangles the zone is decomposed into have
positive areas. The situation is not so rosy for zones with a number of sides
greater than 4, however. In all of the cases we have examined the optimal
center point is different for each basis function, leading to the conclusion that
it depends on the values for the Φi. We note that for asymmetric four sided
zones, the optimal location for the center point does not correspond to the
average of the locations of the corners.

For symmetric cases, further results can be obtained analytically. For the
rectangle shown in Fig. 2 the integral of the square of the gradient can be
evaluated in closed form. For all four basis functions it is

3a2 + 3b2 + xc
2 + yc

2

2ab
, (33)

and we see that the zeros of the derivatives with respect to xc and yc will
occur at xc = 0 and yc = 0. This is not a surprise, considering the symmetry
of the zone.

The boomerang of Fig. 3 is a little more instructive. The integral of
the square of the gradient for each basis function is a unique expression that
is too large to include here, but the derivative with respect to xc unveils
an overall factor of xc, expected from the symmetry, exposing the root at
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xc = 0. Setting xc = 0 in the integral of the square of the gradient for the
basis functions, and then taking the derivative with respect to yc, we obtain

4(b− c)(a2(b− yc) + (b2 − c2 + 2b(c− yc))(b+ yc))

a(a2 + (b− c)2 + 4byc)2
(34)

for the basis function associated with corner 1 and the same rational function
of yc, up to a multiplicative factor involving a, b and c for the other basis
functions.1 The denominator is positive and we have a zero for this expression
when

a2(b− yc) + (b2 − c2 + 2b(c− yc))(b+ yc) = 0 . (35)

This is a quadratic in yc, with the solutions

yc =
±

√
(a2 + (c− 3b)2)(a2 + (b+ c)2)− a2 − (b− c)2

4b
. (36)

We take the + sign for the square root in order to be sure that the center
point is inside the zone.

7 Discussion

The piecewise linear basis functions introduced by Stone and Adams have
been shown to be an effective strategy for discretizing the diffusion equation,
and transport equations that limit to the diffusion equation, using the finite
element method. Stone and Adams chose the average of the corners of the
polygon for the location of the center point, and 1/N for the value of the
basis functions there, in their original definition. This produces useful basis
functions and prior work has shown that the resulting discretization produces
second order accuracy, but leaves open the question of further optimization.

We have developed a variational approach to optimize the values of the
basis functions at the center point location, obtaining a compact closed form
that is easily used in a computer program. We expect that the accuracy
of the finite element discretization will improve by using the optimal center
point coefficients, and, in particular, errors due to a failure to provide zero
divergence of the flux on the perimeter of a zone for a source free problem, as

1This general theme persists for asymmetric quadrilateral zones when numerical coor-
dinates are used for the corners.
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the solution approaches equilibrium, will be removed by using these center
point coefficients.

Using the same variational approach, it is possible to optimize the location
of the center point, although numerical solution appears to be required in the
general case. We find, numerically, that the optimal location of the center
point is independent of the boundary conditions only for the case of four
sides, restricting the utility of this second level of optimization to meshes
composed of quadrilateral zones.

We have not explored optimizing the extension of these basis functions
used for three dimensional problems, although we would expect that the
strategy that we have developed would be useful in three dimensions as well.
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